Search results for "MESH : Behavior"

showing 10 items of 10 documents

Fatty-acid preference changes during development in Drosophila melanogaster.

2011

WOS:000296521400044; International audience; Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation…

[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate Zoology[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionlcsh:MedicineInsectMESH : Behavior AnimalBiochemistrychemistry.chemical_compoundBehavioral EcologyMESH : Drosophila melanogasterMESH: Behavior AnimalMESH: AnimalsPalatabilitylcsh:ScienceMESH : Fatty Acidsmedia_commonchemistry.chemical_classificationLarvaMultidisciplinaryMESH : Food PreferencesEcologyAnimal BehaviorBehavior AnimalEcologyMESH : Fatty Acids UnsaturatedDrosophila MelanogasterFatty AcidsAge FactorsAnimal ModelsNeuroethologyMESH: Fatty Acids UnsaturatedtrpLipidsPreferenceMESH: Fatty AcidsMESH: Dietary FatsSex pheromoneLarvadietary fatFatty Acids Unsaturatedtaste receptor cellSensory PerceptionDrosophila melanogasterResearch Articlelinoleic acidmedia_common.quotation_subjectLinoleic acidZoologylarvaeBiologyMESH: Drosophila melanogasterFood PreferencesModel OrganismslipidAnimalsMESH: Food PreferencesBiologyMESH: Age FactorsEvolutionary BiologyChemical EcologyMESH : Larvalcsh:RfungiFatty acidbiology.organism_classificationDietary Fatstaste receptor cell;dietary fat;aggregation pheromone;linoleic acid;larvae;lipid;trp;palatability;metabolism;mutation[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoologychemistrypalatabilitylcsh:QMESH : Age FactorsMESH : AnimalsmutationmetabolismMESH: Larva[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Dietary FatsNeuroscienceaggregation pheromone
researchProduct

Why do house-hunting ants recruit in both directions?

2007

8 pages; International audience; To perform tasks, organisms often use multiple procedures. Explaining the breadth of such behavioural repertoires is not always straightforward. During house hunting, colonies of Temnothorax albipennis ants use a range of behaviours to organise their emigrations. In particular, the ants use tandem running to recruit na? ants to potential nest sites. Initially, they use forward tandem runs (FTRs) in which one leader takes a single follower along the route from the old nest to the new one. Later, they use reverse tandem runs (RTRs) in the opposite direction. Tandem runs are used to teach active ants the route between the nests, so that they can be involved qui…

0106 biological sciencesMESH: Decision MakingOperations researchTemnothorax albipennisMESH : Social BehaviorTandem runningSocial insectsMESH : Behavior Animal01 natural sciencesNesting BehaviorNestMESH : EcosystemMESH: Behavior Animal[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsMESH: EcosystemMESH: Nesting BehaviorRecruitment methodsMESH: Models Theoretical0303 health sciencesBehavior AnimalbiologyEcologyGeneral MedicineMESH : AntsCollective behaviourMESH: Social BehaviorTandem runningMESH: Population DensityDecision MakingMESH: AntsMESH : Nesting Behavior010603 evolutionary biology03 medical and health sciencesAnimalsTemnothorax albipennisMESH : Population DensitySocial BehaviorSet (psychology)EcosystemEcology Evolution Behavior and Systematics030304 developmental biologyPopulation DensityOriginal PaperAntsMESH : Models TheoreticalModels TheoreticalRecruitment methodsbiology.organism_classificationMESH : Decision MakingMESH : Animals[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Differential influence of Pomphorhynchus laevis (Acanthocephala) on brain serotonergic activity in two congeneric host species.

2007

The physiological mechanisms by which parasites with complex life cycles manipulate the behaviour of their intermediate hosts are still poorly understood. In Burgundy, eastern France, the acanthocephalan parasitePomphorhynchus laevisinverses reaction to light in its amphipod hostGammarus pulex, but not inGammarus roeseli, a recent invasive species. Here, we show that this difference in manipulation actually reflects a difference in the ability of the parasite to alter brain serotonergic (5-HT) activity of the two host species. Injection of 5-HT in uninfected individuals of both host species was sufficient to inverse reaction to light. However, a difference in brain 5-HT immunocytochemical s…

LightMESH : Serotonin[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMESH : Host-Parasite Interactions5-HTIntroduced speciesbiological invasionMESH : Behavior AnimalGammarus spphost manipulationAcanthocephalaMESH: AmphipodaMESH: Behavior Animal[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH : LightParasite hostingMESH: AnimalsbiologyBehavior AnimalEcologyMESH : Acanthocephala[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]BrainMESH : AmphipodaAgricultural and Biological Sciences (miscellaneous)[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyGeneral Agricultural and Biological SciencesAcanthocephalaResearch Article[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologySerotoninZoologyMESH: Host-Parasite InteractionsHost-Parasite InteractionsMESH: BrainSpecies SpecificityGammarus roeseliMESH : Species SpecificityMESH: Species SpecificityAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipodaHost (biology)Gammarus spp.MESH: Acanthocephalabiology.organism_classificationMESH: LightGammarus pulexPulexMESH : BrainPomphorhynchus laevisMESH: SerotoninMESH : Animals[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisBiology letters
researchProduct

Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. : Obesity decreases the fat preference

2013

International audience; A relationship between orosensory detection of dietary lipids, regulation of fat intake, and body mass index was recently suggested. However, involved mechanisms are poorly understood. Moreover, whether obesity can directly modulate preference for fatty foods remains unknown. To address this question, exploration of the oral lipid sensing system was undertaken in diet-induced obese (DIO) mice. By using a combination of biochemical, physiological, and behavioral approaches, we found that i) the attraction for lipids is decreased in obese mice, ii) this behavioral change has an orosensory origin, iii) it is reversed in calorie-restricted DIO mice, revealing an inverse …

CD36 AntigensCD36[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionAdipose tissueMESH : Behavior AnimalBiochemistryCalcium in biologyMice0302 clinical medicineEndocrinologyMESH : Calcium SignalingMESH: Behavior AnimalMESH: ObesityMESH: AnimalsLingual papillaResearch Articles2. Zero hunger0303 health sciencesMESH : Food PreferencesBehavior AnimalMESH : TongueMESH : Diet High-FatMESH: TongueTaste Perceptiontaste sensitivityMESH : Antigens CD36calcium imagingAdipose TissueHealthMESH: Dietary FatsMESH : ObesityFat tasteMESH: Adipose Tissuemedicine.medical_specialtyFood behavior030209 endocrinology & metabolismMESH : Mice Inbred C57BLQD415-436BiologyDiet High-FatMESH: Calcium SignalingMESH : Adipose TissueFood Preferences03 medical and health sciencesCalcium imagingTongueDownregulation and upregulationMESH: Mice Inbred C57BLInternal medicineMESH : MicemedicineAnimalsCalcium SignalingObesityFatty acidsMESH: Food PreferencesMESH: Mice030304 developmental biologyNutritionlong-chain fatty acidsMESH: Antigens CD36MESH : Taste PerceptionCell Biologymedicine.diseaseDietary FatsObesityMice Inbred C57BLMESH: Diet High-FatEndocrinologyMESH: Taste Perceptionbiology.proteinMESH : AnimalsBody mass index[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Dietary Fats
researchProduct

Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity

2006

Manipulative parasites can alter the phenotype of intermediate hosts in various ways. However, it is unclear whether such changes are just by-products of infection or adaptive and enhance transmission to the final host. Here, we show that the alteration of serotonergic activity is functionally linked to the alteration of specific behaviour in the amphipodGammarus pulexinfected with acanthocephalan parasites.Pomphorhynchus laevisand, to a lesser extent,Pomphorhynchus tereticollisaltered phototactism, but not geotactism, inG. pulex, whereas the reverse was true forPolymorphus minutus. Serotonin (5-hydroxytryptamine, 5-HT) injected to uninfectedG. pulexmimicked the altered phototactism, but ha…

Serotonin[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyMESH : SerotoninMESH : Host-Parasite InteractionsZoologyintermediate amphipod hostMESH : Behavior AnimalSerotonergicphototactismGeneral Biochemistry Genetics and Molecular BiologyAcanthocephalaHost-Parasite Interactionsgeotactism[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsAmphipodaGeneral Environmental ScienceBehavior AnimalGeneral Immunology and MicrobiologybiologyEcologyHost (biology)MESH : AcanthocephalaBrainGeneral MedicineMESH : Amphipodabiology.organism_classificationPhenotypeGammarus pulexPulexMESH : BrainPomphorhynchus laevisMESH : AnimalsSerotoninGeneral Agricultural and Biological SciencesAcanthocephalaResearch Articlehost manipulations by parasitesProceedings of the Royal Society B: Biological Sciences
researchProduct

Effects of manganese injected into rat nostrils: implications for in vivo functional study of olfaction using MEMRI.

2011

WOS: 000298212500007; International audience; Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for visualizing neuronal pathways and mapping brain activity modulation. A potential drawback of MEMRI lies in the toxic effects of manganese (Mn), which also depend on its administration route. The aim of this study was to analyze the effects of Mn doses injected into the nostrils of rats on both olfactory perception and MRI contrast enhancement. For this purpose, doses in the range 0-8 μmol MnCl(2) were tested. Behavioral items were quantified with and without odor stimulation during the first 2 h following Mn injection. The MRI study was performed after 16 h of intermitt…

MalePathologyBrain activity and meditation[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionContrast MediaStimulationPharmacologyMESH : Behavior AnimalMEMRI Manganese030218 nuclear medicine & medical imagingMESH: Magnetic Resonance Imaging0302 clinical medicineMESH: SmellMESH: Behavior AnimalMESH: AnimalsMESH: Administration IntranasalMESH : Olfactory Bulbmedicine.diagnostic_testBehavior AnimalChemistryMESH : RatsMagnetic Resonance ImagingOlfactory BulbSmellDoseToxicityMESH: Image EnhancementMESH: Olfactory Bulbmedicine.medical_specialtyMESH: RatsMESH : MaleBiomedical EngineeringBiophysicsMESH: ManganeseOlfactionMESH : Rats Wistar03 medical and health sciencesPrimary olfactory cortexIn vivoMESH : Magnetic Resonance ImagingMESH: Contrast MediamedicineAnimalsRadiology Nuclear Medicine and imagingRats WistarAdministration IntranasalMESH : Contrast MediaBehaviorManganeseToxicityMESH : Administration IntranasalMagnetic resonance imagingMESH: Rats WistarImage EnhancementOlfactionMESH: MaleRatsOdorRatMESH : SmellMESH : Image EnhancementMESH : AnimalsMESH : Manganese[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

Genes involved in sex pheromone discrimination in Drosophila melanogaster and their background-dependent effect.

2012

International audience; Mate choice is based on the comparison of the sensory quality of potential mating partners, and sex pheromones play an important role in this process. In Drosophila melanogaster, contact pheromones differ between male and female in their content and in their effects on male courtship, both inhibitory and stimulatory. To investigate the genetic basis of sex pheromone discrimination, we experimentally selected males showing either a higher or lower ability to discriminate sex pheromones over 20 generations. This experimental selection was carried out in parallel on two different genetic backgrounds: wild-type and desat1 mutant, in which parental males showed high and l…

MaleMESH: Olfactory Perception[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Animals Genetically Modifiedlcsh:MedicineGenes InsectMESH: Genes InsectBreedingMESH : Behavior AnimalMESH: ReproductionCourtshipAnimals Genetically ModifiedSexual Behavior Animal0302 clinical medicineMESH : Drosophila melanogasterMESH: Behavior AnimalMESH : FemaleMESH: AnimalsMatingSex AttractantsMESH: Sexual Behavior Animal10. No inequalitylcsh:Sciencemedia_commonGenetics0303 health sciencesMultidisciplinaryEcologyBehavior AnimalReproductionMESH : Genes InsectAnimal ModelsMESH : ReproductionSensory SystemsDrosophila melanogasterMESH: Sex AttractantsMate choiceSex pheromoneAlimentation et NutritionFemaleDrosophila melanogasterMESH : MutationResearch ArticleMESH: Mutationmedia_common.quotation_subjectMESH : BreedingMESH : MaleMESH: CourtshipContext (language use)MESH: BreedingBiologyMESH: Drosophila melanogasterMESH: Animals Genetically Modified03 medical and health sciencesModel OrganismsSpecies SpecificityMESH : Olfactory PerceptionGeneticsFood and NutritionAnimalsMESH : Species SpecificityMESH: Species SpecificityAlleleMESH : Sexual Behavior AnimalBiology030304 developmental biologyEvolutionary BiologyMESH : Sex AttractantsAnimals;Animals;Genetically Modified;Behavior;Animal;Breeding;Courtship;Drosophila melanogaster;Female;Genes;Insect;Male;Mutation;Olfactory Perception;Reproduction;Sex Attractants;Sexual Behavior;Species SpecificityMESH : Courtshiplcsh:RCourtshipbiology.organism_classificationOlfactory PerceptionMESH: MaleMutationSex Attractantslcsh:QMESH : AnimalsMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

Do distantly related parasites rely on the same proximate factors to alter the behaviour of their hosts?

2006

Phylogenetically unrelated parasites often increase the chances of their transmission by inducing similar phenotypic changes in their hosts. However, it is not known whether these convergent strategies rely on the same biochemical precursors. In this paper, we explored such aspects by studying two gammarid species ( Gammarus insensibilis and Gammarus pulex ; Crustacea: Amphipoda: Gammaridae) serving as intermediate hosts in the life cycle of two distantly related parasites: the trematode, Microphallus papillorobustus and the acanthocephalan, Polymorphus minutus . Both these parasite species are known to manipulate the behaviour of their amphipod hosts, bringing them towards the water surfa…

Proteomics0106 biological sciences[SDV]Life Sciences [q-bio]MESH : Host-Parasite InteractionsMESH : Behavior Animal[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomyMESH: Peptide Mapping01 natural sciencesAcanthocephalaMESH : ProteomicsMESH: AmphipodatrematodeMESH: Behavior Animal[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsElectrophoresis Gel Two-DimensionalMESH: PhylogenyPhylogenyComputingMilieux_MISCELLANEOUSGeneral Environmental Science0303 health sciencesMESH : Peptide MappingBehavior AnimalbiologyEcologyMESH : AcanthocephalaMESH: ProteomicsGeneral MedicineMESH : Amphipodamanipulative parasiteMESH : TrematodaMESH: TrematodaMicrophallusTrematodaTrematodagammaridGeneral Agricultural and Biological SciencesAcanthocephalaResearch Article[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologymolecular convergenceAmphipodaZoology[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: Host-Parasite InteractionsPeptide Mapping010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHost-Parasite Interactions03 medical and health sciencesproteomicsPhylogeneticsAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipoda030304 developmental biologyGeneral Immunology and MicrobiologyHost (biology)MESH : Phylogeny[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH : Electrophoresis Gel Two-DimensionalMESH: AcanthocephalaMESH: Electrophoresis Gel Two-Dimensionalbiology.organism_classificationacanthocephalanGammarus pulexPulexMESH : Animals[ SDV.BID.SPT ] Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Use of ultrasonic vocalizations to assess olfactory detection in mouse pups treated with 3-methylindole.

2005

International audience; Altricial mammals use olfaction long before the olfactory bulb has reached its anatomically mature state. Indeed, while audition and vision are still not functional, the olfactory system of newborn animals can clearly process distinct odorant molecules. Although several previous studies have emphasized the important role that olfaction plays in early critical functions, it has been difficult to develop a sensitive and reliable test to precisely quantify olfactory ability in pups. One difficulty in determining early sensory capabilities is the rather limited behavioral repertory of neonates. The present study examines the use of ultrasonic vocalizations emitted by iso…

Olfactory systemMale[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMESH: UltrasonicsMESH : Behavior AnimalMESH: Animals NewbornBehavioral NeuroscienceMice0302 clinical medicineDiscrimination PsychologicalUltrasound emissionMESH: SmellMESH: Behavior AnimalUltrasonicsMESH: AnimalsMESH: Discrimination (Psychology)OlfactotoxinBehavior AnimalMESH : Animals Newborn05 social sciencesGeneral MedicineMESH : OdorsSkatoleSmellAltricialmedicine.anatomical_structure[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]MESH : UltrasonicsMESH : Sensory DeprivationMESH : MaleMESH: Vocalization AnimalMESH: SkatoleSensory systemMESH : Mice Inbred C57BLOlfactionBiologyDevelopment03 medical and health sciencesMESH: Mice Inbred C57BLMESH : MicemedicineAnimals0501 psychology and cognitive sciencesSensory deprivation050102 behavioral science & comparative psychologyMESH: MiceBehaviorMESH: Sensory DeprivationMESH: OdorsMESH : Vocalization AnimalMESH : SkatoleMESH : Discrimination (Psychology)OlfactionMESH: MaleOlfactory bulbMice Inbred C57BLOdorAnimals NewbornOdorantsMESH : SmellAnimal Science and ZoologyMESH : AnimalsSensory DeprivationVocalization AnimalOlfactory epitheliumNeuroscience030217 neurology & neurosurgery
researchProduct

Is the host or the parasite the most locally adapted in an amphipod–acanthocephalan relationship? A case study in a biological invasion context

2007

8 pages; International audience; Manipulative endoparasites with complex life cycles can alter their intermediate host immunity and behaviour in ways that increase survival probability within the host body cavity and enhance successful transmission to the definitive host. These parasitic manipulations are variable among and within parasite species and may result from co-evolutionary processes, in which the parasite is constrained for adaptation to the local intermediate host. Hence, arrival of a new host species in a local host population may promote local parasite maladaptation. This study tested the occurrence of local adaptation in two distantly located populations of the acanthocephalan…

Pomphorynchus laevis[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyMESH : Molecular Sequence DataLocal adaptationMolecular Sequence DataMESH : Host-Parasite InteractionsPopulationZoologyMESH : Behavior AnimalMESH : Hungary[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunologyAcanthocephalaHost-Parasite InteractionsBehavioural manipulationGammarus roeseliMESH : Ecosystem[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsAmphipodaMESH : FranceeducationEcosystemGammarus roeseliLocal adaptationHungaryeducation.field_of_studyBehavior AnimalbiologyMonophenol MonooxygenaseHost (biology)MESH : AcanthocephalaImmunityIntermediate hostMESH : Amphipodabiology.organism_classificationObligate parasiteMESH : Monophenol Monooxygenase[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]Infectious DiseasesPhenoloxidaseParasitologyPomphorhynchus laevisFranceMESH : AnimalsHost adaptationCoevolutionInternational Journal for Parasitology
researchProduct